Линейное уравнение с двумя переменными и его график

На данном уроке мы рассмотрим уравнение с двумя переменными, дадим его определение и построим график.

Тема: Линейная функция

Урок: Линейное уравнение с двумя переменными и его график

1. Напоминание теоретического материала и формулировка определения линейного уравнения с двумя переменными

Мы познакомились с понятиями координатной оси и координатной плоскости. Мы знаем, что каждая точка плоскости однозначно задает пару чисел (х; у), причем первое число есть абсцисса точки, а второе – ордината.

Мы будем очень часто встречаться с линейным уравнением с двумя переменными, решением которого и есть пара чисел, которую можно представить на координатной плоскости.

Уравнение вида:

, где a, b, с – числа, причем

Называется линейным уравнением с двумя переменными х и у. Решением такого уравнения будет любая такая пара чисел х и у, подставив которую в уравнение мы получим верное числовое равенство.

Пара чисел будет изображаться на координатной плоскости в виде точки.

У таких уравнений мы увидим много решений, то есть много пар чисел, и все соответствующие точки будут лежать на одной прямой.

2. Изучение алгоритма построения графика уравнения на примере

Рассмотрим пример:

Пример 1:

; ; ;

Чтобы найти решения данного уравнения нужно подобрать соответствующие пары чисел х и у:

Пусть , тогда исходное уравнение превращается в уравнение с одной неизвестной:

,

То есть, первая пара чисел, являющаяся решением заданного уравнения (0; 3). Получили точку А(0; 3)

Пусть . Получим исходное уравнение с одной переменной: , отсюда , получили точку В(3; 0)

Занесем пары чисел в таблицу:

х

0

3

у

3

0

Построим на графике точки и проведем прямую:

Отметим, что любая точка на данной прямой будет решением заданного уравнения. Проверим – возьмем точку с координатой и по графику найдем ее вторую координату. Очевидно, что в этой точке . Подставим данную пару чисел в уравнение. Получим 0=0 – верное числовое равенство, значит точка, лежащая на прямой, является решением.

Пока доказать, что любая точка, лежащая на построенной прямой является решением уравнения, мы не можем, поэтому принимаем это за правду и докажем позже.

3. Решение примера

Пример 2 – построить график уравнения:

Составим таблицу, нам достаточно для построения прямой двух точек, но возьмем третью для контроля:

       

х

0

-2

2

у

3

0

6

В первой колонке мы взяли удобный , найдем у:

, ,

Во втором столбике мы взяли удобный , найдем х:

, , ,

Возьмем для проверки и найдем у:

, ,

Построим график:

Умножим заданное уравнение на два:

От такого преобразования множество решений не изменится и график останется таким же самым.

4. Выводы по уроку

Вывод: мы научились решать уравнения с двумя переменными и строить их графики, узнали, что графиком подобного уравнения есть прямая и что любая точка этой прямой является решением уравнения

Список рекомендованной литературы

1. Дорофеев Г. В., Суворова С. Б., Бунимович Е. А. и др. Алгебра 7. 6 издание. М.: Просвещение. 2010 г.

2. Мерзляк А. Г., Полонский В. Б., Якир М. С. Алгебра 7. М.: ВЕНТАНА-ГРАФ

3. Колягин Ю. М., Ткачёва М. В., Фёдорова Н. Е. и др. Алгебра 7 .М.: Просвещение. 2006 г.

Рекомендованные ссылки на ресурсы интернет

1. Интернет-портал Nado5.ru .

2. Портал для семейного просмотра .

3. Интернет-портал Nado5.ru .

Рекомендованное домашнее задание

Задание 1: Мерзляк А. Г., Полонский В. Б., Якир М. С. Алгебра 7, № 960, ст.210;

Задание 2: Мерзляк А. Г., Полонский В. Б., Якир М. С. Алгебра 7, № 961, ст.210;

Задание 3: Мерзляк А. Г., Полонский В. Б., Якир М. С. Алгебра 7, № 962, ст.210;