Определение производной, её физический и геометрический смысл. Алгоритм нахождения производной

На уроке изучается тема «Определение производной, её физический и геометрический смысл. Алгоритм нахождения производной». На этом занятии вы узнаете, что представляет собой производная и какое место она занимает в геометрии и физике. На примерах разбирается алгоритм нахождения производной.

Тема: Производная

Урок: Определение производной, её физический и геометрический смысл. Алгоритм нахождения производной

1. Введение новых понятий

График функции y=f(x)

Рис. 1. График функции .

Рассмотрим функцию , ее график и дадим физическую интерпретацию.

Построим систему координат и кривую (см. рис.1), где

независимая переменная или аргумент (время),

– зависимая переменная или функция (расстояние),

– закон или правило, по которому каждому значению ставится в соответствие только одно значение .

Зафиксируем момент времени (см. рис.2). В этот момент времени можно вычислить по заданному закону , т. е. имеем точку . Эта точка показывает, что в данный момент времени , расстояние - . Дадим аргументу приращение , т. е. прошло некоторое время . Момент времени, который будет рассматриваться - это .

Секущая к графику функции y=f(x)

Рис. 2. Секущая к графику функции .

– приращение аргумента – это разность между новым значением аргумента и старым.

Итак, в новый момент времени, расстояние (от дома) - . Это расстояние можно вычислить по заданному закону, т. е. если подставить в функцию новое значение независимой переменной (аргумента), то можно вычислить новое значение функции. Так получилась точка . В результате получилась секущая , которая наклонена к оси под углом .

– секущая, – ее угол наклона. Этот угол, во – первых, в верхней полуплоскости и, во – вторых, с положительным направлением оси .

Рассмотрим треугольник (см. рис.3). Он прямоугольный. В этом треугольнике острый угол – это угол - угол наклона секущей. Один из катетов - это приращение аргумента, а второй катет – это разность между значением функции в новой точке и значением функции в старой точке.

Приращение функции и приращение аргумента.

Рис. 3. Приращение функции и приращение аргумента.

Величина называется – приращение функции и вычисляется как разность значений функции в новый момент времени минус значение функции в старый момент времени

.

2. Физический смысл отношения ∆f/∆x

Рассмотрим отношение , где – приращение функции, – приращение аргумента (см. рис.4).

Из физических соображений ясно, что отношение расстояния ко времени – это средняя скорость . В этом заключается физический смысл отношения .

Физический и геометрический смысл отношения

Рис. 4. Физический и геометрический смысл отношения .

С другой стороны отношение катета к катету – это тангенс угла – тангенс угла наклона секущей, т. е. геометрический смысл отношения – это тангенс угла наклона секущей .

3. Определение производной

Пусть . Понятно, что и . Точка будет стремиться к точке , а положение секущей будет стремиться занять положение касательной в точке к кривой (см. рис.4). Имеем

       

Зафиксируем эту касательную, – угол наклона этой касательной. Если зафиксировать точку , то отношение зависит только от величины .

Если отношение при стремится к какому-то числу, то это число называется производной функции в точке и обозначается .

Определение. Производной функции в точке называется число, к которому стремится разностное соотношение при .

Определение производной с помощью пределов.

Предел при разностного отношения , если он существует, называется производной функции в точке и обозначается .

4. Геометрический и физический смысл производной

, где – мгновенная скорость в момент . В этом заключается физический смысл производной. Производная – это также тангенс угла наклона касательной , где - угол наклона касательной к кривой в точке с абсциссой .

5. Алгоритм нахождения производной

Для того чтобы найти нужно:

1) Задать приращение – это приращение аргумента и вычислить соответствующее приращение функции или .

2) Найти разностное соотношение , упростить его и сократить на .

3) Если отношение при стремится к какому-то числу, то это число будет .

6. Итог урока

Итак, на уроке было рассмотрено понятие производной. Для этого ввели два новых понятия: приращение аргумента и приращение функции. Также были рассмотрены события, когда приращение аргумента и приращение функции конкретные числа, тогда соотношение имеет смысл физический – это средняя скорость за время и геометрический смысл – это тангенс угла наклона секущей. Далее было рассмотрено, какие процессы происходят, когда . Если , тогда и , и секущая стремится занять положение касательной. Если разностное отношение при стремится к некоторому числу, то это число называется производной функции в точке . Физический смысл производной в момент – это мгновенная скорость в момент , а геометрический – это тангенс угла наклона касательной, которая проведена к кривой в точке с абсциссой . Рассмотрен алгоритм нахождения производной: нужно дать приращение аргументу и получить новую точку . Получили значение функции в новой точке и нашли приращение функции. Надо разделить на и упростить это отношение так, чтобы сократился , и то, что получится при стремлении к нулю будет называться производной функции в конкретной точке . Дальнейшее изложение зависит от вида функции, что и будет рассматриваться на следующем уроке.

Список рекомендованной литературы

1. Алгебра и начала анализа, 10 класс (в двух частях). Учебник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2009.

2. Алгебра и начала анализа, 10 класс (в двух частях). Задачник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2007.

3. Виленкин Н. Я., Ивашев-Мусатов О. С., Шварцбурд С. И. Алгебра и математический анализ для 10 класса (учебное пособие для учащихся школ и классов с углубленным изучением математики).-М.: Просвещение, 1996.

4. Галицкий М. Л., Мошкович М. М., Шварцбурд С. И. Углубленное изучение алгебры и математического анализа.-М.: Просвещение, 1997.

5. Сборник задач по математике для поступающих во ВТУЗы (под ред. М. И.Сканави).-М.:Высшая школа, 1992.

6. Мерзляк А. Г., Полонский В. Б., Якир М. С. Алгебраический тренажер.-К.: А. С.К., 1997.

7. ЗвавичЛ. И., Шляпочник Л. Я., Чинкина Алгебра и начала анализа. 8-11 кл.: Пособие для школ и классов с углубленным изучением математики (дидактические материалы).-М.: Дрофа, 2002.

8. Саакян С. М., Гольдман А. М., Денисов Д. В. Задачи по алгебре и началам анализа (пособие для учащихся 10-11 классов общеобразов. учреждений).-М.: Просвещение, 2003.

9. Карп А. П. Сборник задач по алгебре и началам анализа : учеб. пособие для 10-11 кл. с углубл. изуч. математики.-М.: Просвещение, 2006.

10. Глейзер Г. И. История математики в школе. 9-10 классы (пособие для учителей).-М.: Просвещение, 1983

Дополнительные веб-ресурсы

1. Интернет-портал Mathematics. ru .

2. Портал Естественных Наук .

3. Интернет-портал Exponenta. ru .

Сделай дома

№ 39.40 (Алгебра и начала анализа, 10 класс (в двух частях). Задачник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2007.)

Понравилась статья? Поделиться с друзьями:
Рефератов нет, есть поурочные планы и разработки уроков