Преобразование и упрощение более сложных выражений с корнями (алгебра 8 класс)

В начале урока мы повторим основные свойства квадратных корней, а затем рассмотрим несколько сложных примеров на упрощение выражений, содержащих квадратные корни.

Тема: Функция . Свойства квадратного корня

Урок: Преобразование и упрощение более сложных выражений с корнями

1. Повторение свойств квадратных корней

Вкратце повторим теорию и напомним основные свойства квадратных корней.

Свойства квадратных корней:

1. , следовательно, ;

2. ;

3. ;

4. .

2. Примеры на упрощение выражений с корнями

Перейдем к примерам использования этих свойств.

Пример 1. Упростить выражение .

Решение. Для упрощения число 120 необходимо разложить на простые множители:

. Квадрат суммы раскроем по соответствующей формуле:

.

Ответ. 11.

Пример 2. Упростить выражение .

Решение. Учтем, что данное выражение имеет смысл не при всех возможных значениях переменной, т. к. в данном выражении присутствуют квадратные корни и дроби, что приводит к «сужению» области допустимых значений. ОДЗ: ().

Приведем выражение в скобках к общему знаменателю и распишем числитель последней дроби как разность квадратов:

при.

Ответ. при.

Пример 3. Упростить выражение .

Решение. Видно, что вторая скобка числителя имеет неудобный вид и нуждается в упрощении, попробуем разложить ее на множители с помощью метода группировки.

. Для возможности выносить общий множитель мы упростили корни путем их разложения на множители. Подставим полученное выражение в исходную дробь:

. После сокращения дроби применяем формулу разности квадратов.

Ответ. 13.

3. Пример на избавление от иррациональности

Пример 4. Освободиться от иррациональности (корней) в знаменателе: а) ; б) .

Решение. а) Для того чтобы избавиться от иррациональности в знаменателе, применяется стандартный метод домножения и числителя и знаменателя дроби на сопряженный к знаменателю множитель (такое же выражение, но с обратным знаком). Это делается для дополнения знаменателя дроби до разности квадратов, что позволяет избавиться от корней в знаменателе. Выполним этот прием в нашем случае:

.

б) выполним аналогичные действия:

       

.

Ответ.; .

4. Пример на доказательство и на выделение полного квадрата в сложном радикале

Пример 5. Докажите равенство .

Доказательство. Воспользуемся определением квадратного корня, из которого следует, что квадрат правого выражения должен быть равен подкоренному выражению:

. Раскроем скобки по формуле квадрата суммы:

, получили верное равенство.

Доказано.

Пример 6. Упростить выражение .

Решение. Указанное выражение принято называть сложным радикалом (корень под корнем). В данном примере необходимо догадаться выделить полный квадрат из подкоренного выражения. Для этого заметим, что из двух слагаемых является претендентом на роль удвоенного произведения в формуле квадрата разности (разности, т. к. присутствует минус). Распишем его в виде такого произведения: , тогда на роль одного из слагаемых полного квадрата претендует , а на роль второго – 1.

. Подставим это выражение под корень:

. Модуль раскрывается в таком виде, т. к. .

Ответ..

На этом занятии мы заканчиваем тему «Функция . Свойства квадратного корня», а на следующем уроке начинаем новую тему «Действительные числа».

Список литературы

1. Башмаков М. И. Алгебра 8 класс. – М.: Просвещение, 2004.

2. Дорофеев Г. В., Суворова С. Б., Бунимович Е. А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.

3. Никольский С. М., Потапов М. А., Решетников Н. Н., Шевкин А. В. Алгебра 8 класс. Учебник для общеобразовательных учреждений. – М.: Просвещение, 2006.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Интернет-портал xenoid. ru .

2. Математическая школа .

3. Интернет-портал XReferat. Ru .

Домашнее задание

1. №357, 360, 372, 373, 382. Дорофеев Г. В., Суворова С. Б., Бунимович Е. А. и др. Алгебра 8. – 5-е изд. – М.: Просвещение, 2010.

2. Избавьтесь от иррациональности в знаменателе: а) , б) .

3. Упростите выражение: а) , б) .

4. Докажите тождество .