Применение производной для нахождения наибольшего и наименьшего значений непрерывной функции на промежутке

На уроке по теме «Применение производной для нахождения наибольшего и наименьшего значений непрерывной функции на промежутке» будут рассмотрены относительно простые задачи на нахождение наибольшего и наименьшего значений функции на заданном промежутке с помощью производной.

Тема: Производная

Урок: Применение производной для отыскания наибольшего и наименьшего значений непрерывной функции на промежутке

1. Введение. Постановка задачи

На этом занятии рассмотрим более простую задачу, а именно, будет задан промежуток, будет задана непрерывная функция на этом промежутке. Надо узнать наибольшее и наименьшее значение заданной функции на заданном промежутке.

2. Нахождение наибольшего и наименьшего значений функции без производной

№ 32.1 (б). Дано: , . Нарисуем график функции (см. рис.1).

Рис. 1. График функции .

Известно, что эта функция возрастает на промежутке , значит, она возрастает и на отрезке . А значит, если найти значение функции в точках и , то будут известны пределы изменения данной функции, ее самое большое и самое маленькое значение.

Когда аргумент возрастает от до 8, функция возрастает от до .

Ответ: ; .

3. Нахождение наибольшего и наименьшего значений тригонометрической функции

№ 32.2 (а) Дано: Найти наибольшее и наименьшее значения функции на заданном промежутке.

Построим график этой функции (см. рис.2).

Если аргумент меняется на промежутке , то функция возрастает от -2 до 2. Если аргумент возрастает от , то функция убывает от 2 до 0.

Рис. 2. График функции .

Найдем производную .

, . Если , то и это значение принадлежит заданному отрезку . Если , то . Легко проверить, если принимает другие значения, соответствующие стационарные точки выходят за пределы заданного отрезка. Сравним значения функции на концах отрезка и в отобранных точках, в которых производная равна нулю. Найдем

;

;

.

Ответ: ;.

Итак, ответ получен. Производную в данном случае можно использовать, можно не использовать, применить свойства функции, которые были изучены ранее. Так бывает не всегда, иногда применение производной – это единственный метод, который позволяет решать подобные задачи.

4. Нахождение наибольшего и наименьшего значений функции с помощью производной

№ 32.10 (а)

Дано: , . Найти наибольшее и наименьшее значение функции на данном отрезке.

Если в предыдущем случае можно было обойтись без производной – мы знали, как себя ведет функция, то в данном случае функция довольно сложная. Поэтому, ту методику, которую мы упомянули на предыдущей задаче, применим в полном объеме.

1. Найдем производную . Найдем критические точки , отсюда , - критические точки. Из них выбираем те, которые принадлежат данному отрезку: . Сравним значение функции в точках , , . Для этого найдем

;

;

.

Проиллюстрируем результат на рисунке (см. рис.3).

       

Рис. 3. Пределы изменения значений функции .

Видим, что если аргумент меняется от 0 до 2, функция изменяется в пределах от -3 до 4. Функция меняется не монотонно: она либо возрастает, либо убывает.

Ответ: ;.

5. Алгоритм решения задачи на нахождение наибольшего и наименьшего значений функции

Итак, на трех примерах была продемонстрирована общая методика нахождения наибольшего и наименьшего значения функции на промежутке, в данном случае – на отрезке.

Алгоритм решения задачи на нахождение наибольшего и наименьшего значений функции:

1. Найти производную функции.

2. Найти критические точки функции и отобрать те точки, которые находятся на заданном отрезке.

3. Найти значения функции на концах отрезка и в отобранных точках.

4. Сравнить эти значения, и выбрать наибольшее и наименьшее.

6. Решение задачи

Рассмотрим еще один пример.

Найти наибольшее и наименьшее значение функции , .

Ранее был рассмотрен график этой функции (см. рис.4).

Рис. 4. График функции .

На промежутке область значения этой функции . Точка - точка максимума. При - функция возрастает, при – функция убывает. Из чертежа видно, что , - не существует.

7. Итог урока

Итак, на уроке рассмотрели задачу о наибольшем и наименьшем значении функции, когда заданным промежутком является отрезок; сформулировали алгоритм решения подобных задач.

Список рекомендованной литературы

1. Алгебра и начала анализа, 10 класс (в двух частях). Учебник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2009.

2. Алгебра и начала анализа, 10 класс (в двух частях). Задачник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2007.

3. Виленкин Н. Я., Ивашев-Мусатов О. С., Шварцбурд С. И. Алгебра и математический анализ для 10 класса (учебное пособие для учащихся школ и классов с углубленным изучением математики).-М.: Просвещение, 1996.

4. Галицкий М. Л., Мошкович М. М., Шварцбурд С. И. Углубленное изучение алгебры и математического анализа.-М.: Просвещение, 1997.

5. Сборник задач по математике для поступающих во ВТУЗы (под ред. М. И.Сканави).-М.:Высшая школа, 1992.

6. Мерзляк А. Г., Полонский В. Б., Якир М. С. Алгебраический тренажер.-К.: А. С.К., 1997.

7. ЗвавичЛ. И., Шляпочник Л. Я., Чинкина Алгебра и начала анализа. 8-11 кл.: Пособие для школ и классов с углубленным изучением математики (дидактические материалы).-М.: Дрофа, 2002.

8. Саакян С. М., Гольдман А. М., Денисов Д. В. Задачи по алгебре и началам анализа (пособие для учащихся 10-11 классов общеобразов. учреждений).-М.: Просвещение, 2003.

9. Карп А. П. Сборник задач по алгебре и началам анализа : учеб. пособие для 10-11 кл. с углубл. изуч. математики.-М.: Просвещение, 2006.

10. Глейзер Г. И. История математики в школе. 9-10 классы (пособие для учителей).-М.: Просвещение, 1983

Дополнительные веб-ресурсы

1. Интернет-портал Mathematics. ru .

2. Портал Естественных Наук .

3. Интернет-портал Exponenta. ru .

Сделай дома

№ 46.16, 46.17 (в) (Алгебра и начала анализа, 10 класс (в двух частях). Задачник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2007.)

Понравилась статья? Поделиться с друзьями:
Рефератов нет, есть поурочные планы и разработки уроков