Урок 11. Закрепление пройденного материала. Тригонометрические неравенства. Решение различных задач повышенной сложности. Практика

На практическом занятии мы повторим основные типы заданий из темы «Тригонометрия», дополнительно разберем задачи повышенной сложности и рассмотрим примеры решения различных тригонометрических неравенств и их систем.

Данный урок поможет Вам подготовиться к одному из типов заданий В5, В7, С1 и С3.

Подготовка к ЕГЭ по математике

Эксперимент

Урок 11. Закрепление пройденного материала. Тригонометрические неравенства. Решение различных задач повышенной сложности

Практика

Конспект урока

Повторение тригонометрии

Начнем с повторения основных типов заданий, которые мы рассмотрели в теме «Тригонометрия» и решим несколько нестандартных задач.

Задача №1. Выполнить перевод углов в радианы и градусы: а) ; б) .

а) Воспользуемся формулой перевода градусов в радианы

Подставим в нее указанное значение .

б) Применим формулу перевода радиан в градусы

Выполним подстановку .

Ответ. а) ; б) .

Задача №2. Вычислить: а) ; б) .

а) Поскольку угол далеко выходит за рамки табличного, уменьшим его с помощью вычитания периода синуса. Т. к. угол указан в радианах, то и период будем рассматривать как .

.

б) В данном случае ситуация аналогичная. Поскольку угол указан в градусах, то и период тангенса будем рассматривать как .

Полученный угол хоть и меньше периода, но больше , а это значит, что он относится уже не к основной, а к расширенной части таблицы. Чтобы не тренировать лишний раз свою память запоминанием расширенной таблицы значений тригофункций, вычтем период тангенса еще раз:

.

Воспользовались нечетностью функции тангенс.

Ответ. а) 1; б) .

Задача №3. Вычислить , если .

Приведем все выражение к тангенсам, разделив числитель и знаменатель дроби на . При этом, можем не бояться, что , т. к. в таком случае значения тангенса не существовало бы.

.

Ответ. 2.

Задача №4. Упростить выражение .

Указанные выражения преобразовываются с помощью формул приведения. Просто они непривычно записаны с использованием градусов. Первое выражение вообще представляет собой число. Упростим все тригофункции по очереди:

.

.

Т. к. , то функция меняется на кофункцию, т. е. на котангенс, и угол попадает во вторую четверть, в которой у исходного тангенса знак отрицательный.

.

По тем же причинам, что и предыдущем выражении, функция меняется на кофункцию, т. е. на котангенс, а угол попадает в первую четверть, в которой у исходного тангенса знак положительный.

Подставим все в упрощаемое выражение:

.

Ответ. 1.

Задача №5. Упростить выражение .

Распишем тангенс двойного угла по соответствующей формуле и упростим выражение:

.

Последнее тождество является одной из формул универсальной замены для косинуса.

Ответ..

Задача №6. Вычислить .

Главное, это не сделать стандартной ошибки и не дать ответ, что выражение равно . Воспользоваться основным свойством арктангенса нельзя пока возле него присутствует множитель в виде двойки. Чтобы от него избавиться распишем выражение по формуле тангенса двойного угла , при этом относимся к , как к обыкновенному аргументу.

Теперь уже можно применять основное свойство арктангенса, вспомним, что на его численный результат ограничений нет.

.

Ответ..

Задача №7. Решить уравнение .

При решении дробного уравнения, которое приравнивается к нулю, всегда указывается, что числитель равен нулю, а знаменатель нет, т. к. на ноль делить нельзя.

Первое уравнение представляет собой частный случай простейшего уравнения, которое решается с помощью тригонометрической окружности. Вспомните самостоятельно этот способ решения. Второе неравенство решается как простейшее уравнение по общей формуле корней тангенса, но только с записью знака неравно.

Как видим, одно семейство корней исключает другое точно такое же по виду семейство не удовлетворяющих уравнению корней. Т. е. корней нет.

Ответ. Корней нет.

Задача №8. Решить уравнение .

Сразу заметим, что можно вынести общий множитель и проделаем это:

Уравнение свелось к одной из стандартных форм, когда произведение нескольких множителей равно нулю. Мы уже знаем, что в таком случае или один из них равен нулю или другой, или третий. Запишем это в виде совокупности уравнений:

Первые два уравнения являются частными случаями простейших, с подобными уравнениями мы уже многократно встречались, поэтому сразу укажем их решения. Третье уравнение приведем к одной функции с помощью формулы синуса двойного угла.

Решим отдельно последнее уравнение:

Данное уравнение не имеет корней, т. к. значение синуса не могут выходить за пределы .

Таким образом, решением является только два первых семейства корней, их можно объединить в одно, что легко показать на тригонометрической окружности:

Это семейство всех половин , т. е.

Ответ..

Тригонометрические неравенства

Перейдем к решению тригонометрических неравенств. Сначала разберем подход к решению примера без использования формул общих решений, а с помощью тригонометрической окружности.

       

Задача №9. Решить неравенство .

Изобразим на тригонометрической окружности вспомогательную линию, соответствующую значению синуса равному , и покажем промежуток углов, удовлетворяющих неравенству.

Очень важно понять, как именно указывать полученный промежуток углов, т. е. что является его началом, а что концом. Началом промежутка будет угол, соответствующей точке, в которую мы войдем в самом начале промежутка, если будем двигаться против часовой стрелки. В нашем случае это точка, которая находится слева, т. к. двигаясь против часовой стрелки и проходя правую точку, мы наоборот выходим из необходимого промежутка углов. Правая точка будет, следовательно, соответствовать концу промежутка.

Теперь необходимо понять значения углов начала и конца нашего промежутка решений неравенства. Типичная ошибка – это указать сразу, что правой точке соответствует угол , левой и дать ответ . Это неверно! Обратите внимание, что мы только что указали промежуток, соответствующий верхней части окружности, хотя нас интересует нижняя, иными словами, мы перепутали начало и конец необходимого нам интервала решений.

Чтобы интервал начинался с угла правой точки, а заканчивался углом левой точки, необходимо, чтобы первый указанный угол был меньше второго. Для этого угол правой точки нам придется отмерять в отрицательном направлении отсчета, т. е. по часовой стрелке и он будет равен . Тогда, начиная движение с него в положительном направлении по часовой стрелке, мы попадем в правую точку уже после левой точки и получим для нее значение угла . Теперь начало промежутка углов меньше конца , и мы можем записать промежуток решений без учета периода:

Учитывая, что такие промежутки будут повторяться бесконечное количество раз после любого целого количества поворотов, получим общее решение с учетом периода синуса :

.

Круглые скобки ставим из-за того, что неравенство строгое, и точки на окружности, которые соответствуют концам промежутка, мы выкалываем.

Сравните полученный ответ с формулой общего решения, которую мы приводили на лекции.

Ответ..

Указанный способ хорош для понимания того, откуда берутся формулы общих решений простейших тригонеравенств. Кроме того, он полезен для тех, кому лень учить все эти громоздкие формулы. Однако сам по себе способ тоже непростой, выберете, какой подход к решению вам наиболее удобен.

Для решения тригонометрических неравенств можно использовать и графики функций, на которых строится вспомогательная линия аналогично показанному способу с использованием единичной окружности. Если вам интересно, попробуйте самостоятельно разобраться с таким подходом к решению. В дальнейшем будем использовать общие формулы для решения простейших тригонометрических неравенств.

Задача №10. Решить неравенство .

Воспользуемся формулой общего решения с учетом того, что неравенство нестрогое:

Получаем в нашем случае:

.

Ответ.

Задача №11. Решить неравенство .

Воспользуемся формулой общего решения для соответствующего строго неравенства:

Получим:

Ответ..

Задача №12. Решить неравенства: а) ; б) .

В указанных неравенствах не надо спешить использовать формулы общих решений или тригонометрическую окружность, достаточно просто вспомнить об области значений синуса и косинуса.

а) Поскольку , то неравенство не имеет смысла. Следовательно, решений нет.

б) Т. к. аналогично , то синус от любого аргумента всегда удовлетворяет указанному в условии неравенству . Следовательно неравенству удовлетворяют все действительные значения аргумента .

Ответ. а) решений нет; б) .

Задача 13. Решить неравенство .

Это простейшее неравенство со сложным аргументом решается аналогично подобному уравнению. Сначала находим решение для всего указанного в скобках аргумента целиком, а потом преобразовываем его к виду «», работая с обоими концами промежутка, как с правой частью уравнения.

Воспользуемся формулой общего решения с учетом того, что неравенство нестрогое:

В нашем случае:

.

Ответ.

Задача №14. Решить неравенство .

Т. к. в неравенстве в нескольких местах присутствует синус, выполним замену :

Решим это квадратичное неравенство, разложив его на множители. Для этого решим квадратное уравнение: 2.

Запишем разложение на множители

Нанесем нули множителей на числовую ось и решим неравенство «методом интервалов» с помощью изображения так называемой змейки:

Выполним обратную подстановку и получим двойное неравенство:

Правое неравенство решать не нужно, т. к. синус исходя из своей области значений и так всегда меньше единицы, а значит и двойки. Остается одно простейшее неравенство , которое мы решаем с помощью формул общих решений:

Т. е.:

Ответ..

Система тригонометрических неравенств

Как и договаривались в лекционной части урока, приведем пример решения одной системы тригонометрических неравенств.

Задача №15. Решить систему неравенств .

Решим простейшие неравенства с помощью формул общих решений:

и

.

Для наших неравенств имеем два промежутка решений:

И

Для этих двух промежутков необходимо указать пересечение. Изобразим это на тригонометрической окружности:

Видно, что пересечением областей решений является промежуток:

Промежуток не является частью решения, т. к. на самом деле здесь области не пересекаются, поскольку лежат в разных диапазонах углов: отрицательном и положительном.

Обратите внимание на то, что начало промежутка решений включается, а конец исключается.

Ответ. .

На практическом занятии мы повторили основные типы заданий из темы «Тригонометрия», дополнительно разобрали задачи повышенной сложности и рассмотрели примеры решения различных тригонометрических неравенств и их систем.

После изучения всех материалов урока проверьте с помощью среза, как вы усвоили тему «Тригонометрия».

Закрепите материал с помощью тренажёров

    Тренажёр 1 Тренажёр 2 Тренажёр 3 Тренажёр 4 Тренажёр 5