Алгоритм решения рациональных уравнений

На данном уроке мы научимся решать рациональные уравнения. Разберем несколько примеров, а также сформулируем алгоритм решения рациональных уравнений.

Рациональные выражения и рациональные уравнения

Мы уже научились решать квадратные уравнения. Теперь распространим изученные методы на рациональные уравнения.

Что такое рациональное выражение? Мы уже сталкивались с этим понятием. Рациональными выражениями называются выражения, составленные из чисел, переменных, их степеней и знаков математических действий.

Соответственно, рациональными уравнениями называются уравнения вида: , где – рациональные выражения.

Раньше мы рассматривали только те рациональные уравнения, которые сводятся к линейным. Теперь рассмотрим и те рациональные уравнения, которые сводятся и к квадратным.

Пример решения рационального уравнения

Пример 1

Решить уравнение: .

Решение:

В самом начале перенесем все слагаемые в левую сторону, чтобы справа остался 0. Получаем:

Теперь приведем левую часть уравнения к общему знаменателю:

Дробь равна 0 тогда и только тогда, когда ее числитель равен 0, а знаменатель не равен 0.

Получаем следующую систему:

Первое уравнение системы – это квадратное уравнение. Прежде чем его решать, поделим все его коэффициенты на 3. Получим:

Коэффициенты данного уравнения: . Вычисляем дискриминант:

Далее, по формуле корней квадратного уравнения находим:

Получаем два корня: ; .

Теперь решим второе неравенство: произведение множителей не равно 0 тогда и только тогда, когда ни один из множителей не равен 0.

Поскольку 2 никогда не равно 0, то необходимо, чтобы выполнялись два условия: . Поскольку ни один из полученных выше корней уравнения не совпадает с недопустимыми значениями переменной, которые получились при решении второго неравенства, они оба являются решениями данного уравнения.

Ответ: .

Алгоритм решения рационального уравнения

Итак, давайте сформулируем алгоритм решения рациональных уравнений:

1. Перенести все слагаемые в левую часть, чтобы в правой части получился 0.

2. Преобразовать и упростить левую часть, привести все дроби к общему знаменателю.

3. Полученную дробь приравнять к 0, по следующему алгоритму: .

4. Записать те корни, которые получились в первом уравнении и удовлетворяют второму неравенству, в ответ.

       

Пример решения рационального уравнения

Давайте рассмотрим еще один пример.

Пример 2

Решить уравнение: .

Решение

В самом начале перенесем все слагаемые в левую сторону, чтобы справа остался 0. Получаем:

Теперь приведем левую часть уравнения к общему знаменателю:

Данное уравнение эквивалентно системе:

Первое уравнение системы – это квадратное уравнение.

Коэффициенты данного уравнения: . Вычисляем дискриминант:

Далее, по формуле корней квадратного уравнения находим:

Получаем два корня: ; .

Теперь решим второе неравенство: произведение множителей не равно 0 тогда и только тогда, когда ни один из множителей не равен 0.

Необходимо, чтобы выполнялись два условия: . Получаем, что из двух корней первого уравнения подходит только один – 3.

Ответ:.

На этом уроке мы вспомнили, что такое рациональное выражение, а также научились решать рациональные уравнения, которые сводятся к квадратным уравнениям.

На следующем уроке мы рассмотрим рациональные уравнения как модели реальных ситуаций, а также рассмотрим задачи на движение.

Список литературы

Башмаков М. И. Алгебра, 8 класс. – М.: Просвещение, 2004. Дорофеев Г. В., Суворова С. Б., Бунимович Е. А. и др. Алгебра, 8. 5-е изд. – М.: Просвещение, 2010. Никольский С. М., Потапов М. А., Решетников Н. Н., Шевкин А. В. Алгебра, 8 класс. Учебник для общеобразовательных учреждений. – М.: Просвещение, 2006.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Фестиваль педагогических идей "Открытый урок" . School. xvatit. com . Rudocs. exdat. com .

Домашнее задание

Решите уравнения: а) ; б) . Решите уравнения: а) , б) . При каком значении переменной сумма дробей и равна 3?

Понравилась статья? Поделиться с друзьями:
Рефератов нет, есть поурочные планы и разработки уроков